High on Life? Medical Marijuana Laws and Suicide

D. Mark Anderson
Department of Agricultural Economics and Economics
Montana State University
dwight.anderson@montana.edu

Daniel I. Rees
Department of Economics
University of Colorado Denver
daniel.rees@ucdenver.edu

Joseph J. Sabia
Department of Economics
San Diego State University
jsabia@mail.sdsu.edu

March 2012

ABSTRACT

Using state-level data for the period 1990 through 2007, we estimate the effect of legalizing medical marijuana on suicide rates. Our results suggest that the passage of a medical marijuana law is associated with an almost 5 percent reduction in the total suicide rate, an 11 percent reduction in the suicide rate of 20- through 29-year-old males, and a 9 percent reduction in the suicide rate of 30- through 39-year-old males. Estimates of the relationship between legalization and female suicides are less precise and are sensitive to functional form.

JEL Codes: I10, I18
Keywords: Medical Marijuana Laws; Marijuana; Alcohol; Suicide
1. INTRODUCTION

Under the Controlled Substances Act of 1970, marijuana was classified as a Schedule I drug—that is, a substance with no “accepted medical use in treatment in the United States” (Eddy 2010). Since then, 16 states and the District of Columbia have legalized the use of medical marijuana; six more state legislatures have recently considered medical marijuana bills.

Proponents of legalization argue that marijuana can be an effective treatment for bipolarism, depression, and other mood disorders (Rosenthal et al. 1996; Grinspoon and Bakalar 1997; Zimmerman 1999).¹ Opponents, on the other hand, argue that marijuana use increases the likelihood of depression, anxiety, psychosis, and schizophrenia (Zammit et al. 2002; Henquet et al. 2004; Goldberg 2006; Shulman 2008). They also argue that the negative effects of marijuana are long-lasting and that users are at risk of suffering from decreased psychological well-being later in life (Green and Ritter 2000; McGee et al. 2000). Although the relationship between marijuana use and suicide-related outcomes (e.g., depression, suicidal ideation, and suicide attempts) has been studied extensively (Petronis et al. 1990; Felts et al. 1992; Borowsky et al. 2001), there have been no previous attempts to estimate the effect of medical marijuana laws (hereafter MMLs) on completed suicides, the tenth leading cause of death in the United States (National Institute of Mental Health 2010).

Drawing on suicide data at the state level from the Centers for Disease Control for the period 1990-2007, we find that the passage of a MML is associated with an almost 5 percent reduction in the total suicide rate, an 11 percent reduction in the suicide rate of

¹ Tetrahydrocannabinol (THC), the primary psychoactive ingredient in marijuana, produces mild euphoria and has analgesic effects (Elphick and Egertova 2001).
20- through 29-year-old males, and a 9 percent reduction in the suicide rate of 30-
through 39-year-old males. This pattern of results is consistent with registry data from
Arizona, Colorado, and Montana showing that most medical marijuana patients are male,
and that roughly half are under the age of 40 (Anderson et al. 2011). Estimates of the
relationship between legalization and suicides among females are less precise and are
sensitive to functional form. We conclude that the legalization of medical marijuana
reduces the risk of suicide among young adult males.

2. BACKGROUND

2.1. MMLs and substance use

MMLs remove criminal penalties for using, possessing, and cultivating marijuana
for medicinal purposes. Because it is prohibitively expensive for the government to
ensure that all marijuana ostensibly grown for the medicinal market ends up in the hands
of registered patients, diversion to the illegal market likely occurs. Only a handful of
MMLs permit individuals with mental health problems to obtain medical marijuana.
California includes anxiety as a qualifying condition, while Delaware and New Mexico
both allow the use of medical marijuana for post-traumatic stress disorder (Marijuana
Doctors 2011). However, without exception, MMLs allow patients to register based on
medical conditions that cannot be objectively confirmed (e.g., chronic pain and nausea),
and in some states it is possible to petition for access to medical marijuana based on

\[2\text{ All MMLs enacted during the period 1990-2007 allowed for home cultivation. Since 2007, Delaware,}
\text{ New Jersey and Washington D.C. have passed MMLs that do not permit home cultivation (Marijuana}
\text{ Policy Project 2011). See Appendix Table 1 for a list of states that legalized medical marijuana during the}
\text{ period 1990-2007.}\]
ailments not included on the official list of qualifying conditions (Marijuana Doctors 2011).

Surprisingly little is known about the relationship between MMLs and marijuana use. Gorman and Huber (2007) examined data on adult arrestees for the period 1995–2002 from Denver, Los Angeles, Portland, San Diego and San Jose. They found little evidence that marijuana use by arrestees increased as a result of legalization. In contrast, Wall et al. (2011, p. 714) found that rates of marijuana use among 12- through 17-year-olds were higher in states that had legalized medical marijuana than in states that had not, but noted that “in the years prior to MML passage, there was already a higher prevalence of use and lower perceptions of risk” in states that had legalized medical marijuana.

Perhaps the best evidence on the relationship between MMLs and marijuana use comes from Anderson et al. (2011). These authors used a difference-in-differences estimation strategy and data from the National Survey on Drug Use and Health (NSDUH) from three states that legalized medical marijuana in the mid-2000s: Montana, Rhode Island, and Vermont. They found that marijuana use among 18- through 25-year-olds living in Montana increased by 19 percent as a result of legalization. Marijuana use among 18- through 25-year-olds living in Rhode Island increased by 21 percent, and marijuana use by Rhode Island residents ages 26 and older increased by 44 percent. However, there was no evidence that legalization in Vermont led to an increase in consumption.3

Anderson et al. (2011) also examined the relationship between MMLs and alcohol consumption. Using data from the Fatal Accident Report System (FARS) for the period

3 Vermont passed a MML in 2004, but did not allow for medical marijuana dispensaries until 2011. This likely explains Anderson et al.’s (2011) null finding for Vermont.
1990-2009, they found that legalization of medical marijuana led to a sharp reduction in fatal crashes involving alcohol. In addition, using data from the Behavioral Risk Factor Surveillance System (BRFSS) for the same period, they found evidence that legalization led to a 25 percent reduction in self-reported alcohol consumption among 20- through 29-year-olds; using data from the Beer Institute, they found that legalization led to a 5.3 percent decrease in per capita beer sales, the most popular alcoholic beverage among young adults (Jones 2008). Anderson et al. (2011) concluded that their results were “consistent with the hypothesis that marijuana and alcohol are substitutes” (p. 18).

2.2. Stressful life events and suicide

Hamermesh and Soss (1974) were the first economists to model suicidal behavior. According to their “economic theory of suicide”, negative shocks to happiness can reduce expected lifetime utility to the point where an individual will decide to take his or her own life. Even if a shock is perceived to be temporary, an individual with “time-inconsistent preferences” may commit suicide at the prospect of having to cope with an acutely “painful state in the present” (Cutler et al. 2001, p. 235).

4 Estimates from Anderson et al. (2011) on the relationship between MMLs and alcohol consumption are reproduced in Appendix Tables 2 and 3.

5 Anderson et al. (2011) noted that a consensus has not been reached with regard to the relationship between marijuana and alcohol consumption. A number of studies have found evidence of complementarity between marijuana and alcohol (Pacula 1998; Farrelly et al. 1999; Williams et al. 2004; Yörük and Yörü̈k 2011), while others studies lend support to the hypothesis that marijuana and alcohol are substitutes (Chaloupka and Laixuthai 1997; Saffer and Chaloupka 1999; DiNardo and Lemieux 2001; Crost and Guerrero 2012).

6 There is evidence to support the hypothesis that preferences are time inconsistent (O’Donoghue and Rabin 2001, p. 41). Non-economists have exerted considerable effort to understand the rationality (or lack thereof) of suicide. See, for instance, Henry and Short (1954), Brandt (1975) and Graber (1981).
In fact, there is evidence that suicide among adolescents and young adults is often triggered by “stressful life events”, or SLEs. SLEs include, but are not limited to, the breakup of a romantic relationship (De Wilde et al. 1992; Brent et al. 1993; Beautrais et al. 1997; Johnson et al. 2002), conflict with a parent or sibling (Brent et al. 1993; Johnson et al. 2002), an abortion (Gissler et al. 1996; Gissler et al. 2005), and legal/disciplinary problems (Brent et al. 1993).

Among older adults, problems at work, financial difficulties, unemployment and separation/divorce are common triggers of suicide (Heikkinen et al. 1994; Johansson and Sundquist 1997; Cavanagh et al. 1999; Preti and Miotto 1999; Duberstein et al. 2004; Kõlves et al. 2006). Among the elderly, suicide is often associated with physical illness and functional impairment (Whitlock 1986; Mackenzie and Popkin 1987; Harris and Barraclough 1994; Conwell et al. 2000; Waern et al. 2002). A number of researchers have concluded that the symptoms of depression (or self-reported depression) mediate the relationship between SLEs and suicidal behavior (Fergusson et al. 2000; Conwell et al. 2002; Hardt and Johnson 2010).

2.3. Marijuana use and mental health

Could marijuana use help individuals cope with negative shocks to happiness that, according to Hamermesh and Soss (1974), lead to suicide? Alternatively, could marijuana use magnify the impact of SLEs?

Animal studies provide evidence that, at low doses, synthetic cannabinoid injections can have a potent anti-depressant effect (Jiang et al. 2005; Bambico et al. 2006).
2007). However, higher dosages can reduce serotonin transmission and lead to “depression-like behavior” (Bambico et al. 2007; Bambico et al. 2010). The majority of epidemiological studies have found that marijuana use is positively associated with both the symptoms of depression and suicidal ideation (Rey et al. 2002; Moore et al. 2007). However, any association between marijuana use and outcomes such as these could be driven by difficult-to-observe factors (Van Ours and Williams 2011) or simply reflect self-medication (Gruber et al. 1996; Rey et al. 2002). Although there have been attempts to account for these sources of endogeneity, none have been particularly convincing. Moore et al. (2007, p. 325) concluded their review of the literature by noting that “the majority of studies for affective outcomes [such as depression and suicidal ideation] did not adequately address the problem of reverse causation as a possible alternative explanation for any association observed.”

2.4. Alcohol use and mental health

Alcohol consumption represents an alternative route through which legalization of medical marijuana could impact suicides. Numerous studies have shown that alcoholism is more common among individuals with major depression (Sullivan et al. 2004).

7 Deficiency of the neurotransmitter serotonin, a chemical produced by the brain, is linked to depression (Karg et al. 2011).

8 For instance, Bovasso (2001) found that marijuana use was positively associated with these outcomes among Baltimore residents who participated in the Epidemiologic Catchment Area Study; Fergusson et al. (2002) found similar results among teenagers and young adults in New Zealand. In contrast, Denson and Earleywine (2006) found a negative association between marijuana use and the symptoms of depression. Beautrais et al. (1999) found that “much of the association between cannabis abuse/dependence and suicide attempt risk arose because: (a) individuals who develop cannabis abuse/dependency tend to come from disadvantaged socio-demographic and childhood backgrounds…, or (b) because cannabis abuse/dependence is co-morbid with other mental disorders which are independently associated with suicidal behaviour.” Moore (2007) described the case of one woman who “without the relief that marijuana delivered to her…killed herself at home.”
Moreover, alcoholism is associated with suicidal ideation as well as attempted and completed suicides (Cornelious et al. 1995; Kessing 1999; Chatterji et al. 2004; Rodriguez Andres 2005).

Policy studies provide further evidence of a link between alcohol use and suicide. For instance, Birckmayer and Hemenway (1999) and Carpenter and Dobkin (2009) provide evidence that prohibiting young adults from drinking protects against suicide. In a similar vein, Carpenter (2004) found that the adoption of stricter drunk driving laws lead to fewer suicides among young males. Markowitz et al. (2003) found a strong negative relationship between the excise tax on beer and male suicides. Interestingly, neither Carpenter (2004) nor Markowitz et al. (2003) found consistent evidence that alcohol policies had an impact on female suicides.

3. DATA AND ESTIMATION

Data on suicides come from the National Center for Health Statistics Mortality Detail Files, produced by the Centers for Disease Control. They are at the state level and are available for the period 1990 through 2007. We use a difference-in-differences (DD) regression framework to estimate the relationship between MMLs and suicide rates. Specifically, our baseline estimating equation is:

\[
\ln(Suicides\ Total_{st}) = \beta_0 + \beta_1 MML_{st} + X_s \beta_2 + v_s + w_t + \varepsilon_{st},
\]

9 See also Son and Topyan (2011), who examined the relationship between alcoholic beverage excise taxes and suicides using data from the United States for the period 1995-2004.
where s indexes states, t indexes years, and v_s and w_t represent state and year fixed effects, respectively. The variable MML_{st} is an indicator for whether medical marijuana was legal in state s and year t.

The vector X_{st} includes the state beer tax, an indicator for whether a Zero Tolerance law was in effect, an indicator for whether a 0.08 BAC law was in effect, an indicator for whether marijuana possession was decriminalized, the state unemployment rate, and per capita income. Previous studies provide evidence that stricter alcohol policies can reduce suicides (e.g., Jones et al. 1992; Birckmayer and Hemenway 1999; Markowitz et al. 2003; Carpenter 2004). There is also evidence that suicide rates are sensitive to economic conditions (Gerdtham and Johannesson 2003; Rodriguez Andres 2005; Minoiu and Rodriguez Andres 2008; Chung 2009).\footnote{Jones et al. (1992) and Birckmayer and Hemenway (1999) both found that higher minimum legal drinking ages (MLDA) were associated with fewer youth suicides, and Carpenter and Dobkin (2009) used a regression discontinuity design to show that granting legal access to alcohol at age 21 leads to a large and immediate increase in suicides. However, because all states had a minimum legal drinking age of 21 by 1990, we do not control for the MLDA. During the period 1990-2007, only one state decriminalized the possession of marijuana (Nevada).} Table 1 presents descriptive statistics for the variables used in this paper.

As a robustness test, we include state-specific linear time trends to the right-hand side of the estimating equation. That is, we estimate:

$$\ln(Suicides_{Total, st}) = \beta_0 + \beta_1 MML_{st} + X_{st} \beta_2 + v_s + w_t + \Theta_s \cdot t + \epsilon_{st}. \quad (2)$$

The state-specific trends are intended to control for the influence of difficult-to-measure factors at the state level that evolve smoothly over time such as attitudes.
4. THE RESULTS

Table 2 presents OLS estimates of the relationship between MMLs and suicides. All regressions are weighted by the relevant population in state s and year t, and the standard errors are corrected for clustering at the state level (Bertrand et al. 2004).

The estimated relationship between MMLs and the total suicide rate is presented in the first column of Table 2. Without state-specific linear time trends, legalization is associated with a 6.9 percent decrease in the suicide rate ($e^{-0.072} - 1 = -0.069$). When state-specific linear time trends are included, legalization is associated with a 4.8 percent decrease in the suicide rate.

In the remaining columns of Table 2, we allow the estimated relationship between legalization and suicides to differ by gender. MMLs are associated with a 4.6 to 6.3 percent decrease in the male suicide rate. MMLs are negatively associated with the female suicide rate, but these estimates are not statistically significant at conventional levels.

Next, we examine the relationship between the legalization of medical marijuana and suicides by gender and age group (Table 3). Our estimates suggest that legalization leads to a sharp reduction in suicides among young adult males. For instance, in the model with state-specific linear time trends, legalization is associated with a 10.8 percent decrease in the suicide rate of 20- through 29-year-old males, and a 9.4 percent decrease in the suicide rate of 30- through 39-year-old males. These results are consistent with those of Anderson et al. (2011), who found that MMLs have the greatest impact on the substance use of young adults, and are also consistent with registry data from Arizona,
Colorado, and Montana showing that most medical marijuana patients are male and that roughly half of medical marijuana patients are under the age of 40 (Anderson et al. 2011).

Although the estimates of β_i are negative for males between the ages of 15 and 19, they are never significantly different from zero. Likewise, the estimates of β_i for males ages 40 through 59 are consistently negative, but not precisely estimated. For males 60 years of age and older, estimates are negative in two of the three specifications, but none are statistically significant at conventional levels.

Table 4 presents the results for females by age group. There is little evidence that legalization of medical marijuana impacted suicides among females under the age of 30. The estimated relationship between legalization and suicides is stronger among older females, although it is sensitive to model specification. Controlling for state and year fixed effects and the covariates listed in Table 1, the legalization of medical marijuana is associated with a 10.4 percent decrease in the suicide rate of 30- through 39-year-old females. However, the estimated impact of legalization becomes much smaller in magnitude and is no longer statistically significant when we add state-specific linear time trends.

Although consistently negative, the estimated impact of legalization for females ages 40 through 49 is never statistically significant. However, when we control for state-specific linear time trends, legalization is associated with large and statistically significant decreases in the suicide rate of 50-through 59-year-old females and the suicide rate of females ages 60 and older.

Finally, we examined pre- and post-legalization trends in suicides using the regression framework introduced in the previous section. Specifically, we replaced MML
with three lead indicators, an indicator for the year of the law change, and four lag indicators. Our results were consistent with the hypothesis that MMLs have a causal impact on male suicide rates.11

5. CONCLUSION

Numerous epidemiological studies have found a positive association between marijuana and suicide-related outcomes such as depression and suicidal ideation. However, this association could be driven by difficult-to-observe factors or simply reflect self-medication. In fact, a recent review of the epidemiological literature concluded that most studies had not adequately addressed the problem of reverse causation (Moore et al. 2007).

The current study avoids the problems of reverse causality and unobserved heterogeneity at the individual level by examining the relationship between the legalization of medical marijuana and completed suicides. Specifically, we use a difference-in-differences empirical strategy to estimate the impact of MMLs on state-level suicide rates. Our results suggest that the legalization of medical marijuana is associated with a 5 percent decrease in the total suicide rate, an 11 percent decrease in the suicide rate of 20- through 29-year-old males, and a 9 percent decrease in the suicide rate of 30- through 39 year-old-males. Estimates for female suicide rates are generally measured with less precision and are sensitive to functional form.

11 Controlling for year and state fixed effects, the covariates listed in Table 1 and state-specific linear trends, none of the lead dummies were statistically distinguishable from zero. However, there was a strong negative relationship between lagged legalization and the male suicide rate. In contrast, the evidence that legalization reduces suicides among females was much weaker: although the estimated coefficients of the lag indicators were two to three times larger than those of the lead indicators, we could not reject the hypothesis that they were equal.
In an often-cited article, Hamermesh and Soss (1974) argued that negative shocks to happiness may reduce expected lifetime utility to the point where an individual will decide to take his or her own life. The negative relationship between legalization and suicides among young adult males is consistent with the argument that marijuana can be used to cope with such shocks. However, estimates provided by Anderson et al. (2011) provide an alternative explanation. These authors found that the passage of MMLs lead to sharp decreases in alcohol-related traffic fatalities, self-reported alcohol use, and per capita beer sales. The strong association between alcohol consumption and suicide-related outcomes found by previous researchers (Markowitz et al. 2003; Carpenter 2004; Sullivan et al. 2004; Rodriguez Andres 2005; Carpenter and Dobkin 2009) raises the possibility that medical marijuana laws reduce the risk of suicide by decreasing alcohol consumption.

Although 16 states have passed medical marijuana laws, and others are considering legalization, very little is known about the effects of these laws. Policymakers weighing the pros and cons of legalization should consider the possibility that medical marijuana laws may lead to fewer suicides among young adult males. However, the exact mechanism through which suicides are reduced remains a topic for future study.

REFERENCES

Neurons through the Medial Prefrontal Cortex.” *Journal of Neuroscience* 27: 11700-11711.

Johnson, Jeffrey, Patrick Cohen, Madelyn Gould, Stephanie Kasen, Jocelyn Brown, and Judith Brook. 2002. “Childhood Adversities, Interpersonal Difficulties, and Risk for Suicide Attempts during Late Adolescence and Early Adulthood.”
Archives of General Psychiatry 59: 741-749.

30: 740-753.

Table 1. Weighted Means of Dependent and Independent Variables

<table>
<thead>
<tr>
<th>Dependent Variables</th>
<th>Mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suicide rates per 100,000</td>
<td></td>
</tr>
<tr>
<td>Suicides Total</td>
<td>14.3 (3.47)</td>
</tr>
<tr>
<td>Suicides Male</td>
<td></td>
</tr>
<tr>
<td>Ages 15-19</td>
<td>14.4 (6.13)</td>
</tr>
<tr>
<td>Ages 20-29</td>
<td>22.9 (6.92)</td>
</tr>
<tr>
<td>Ages 30-39</td>
<td>22.9 (6.27)</td>
</tr>
<tr>
<td>Ages 40-49</td>
<td>24.0 (6.19)</td>
</tr>
<tr>
<td>Ages 50-59</td>
<td>23.3 (6.10)</td>
</tr>
<tr>
<td>Ages 60+</td>
<td>30.3 (8.81)</td>
</tr>
<tr>
<td>Suicides Female</td>
<td>5.51 (1.49)</td>
</tr>
<tr>
<td>Ages 15-19</td>
<td>3.09 (1.82)</td>
</tr>
<tr>
<td>Ages 20-29</td>
<td>4.13 (1.53)</td>
</tr>
<tr>
<td>Ages 30-39</td>
<td>5.79 (2.00)</td>
</tr>
<tr>
<td>Ages 40-49</td>
<td>7.35 (2.59)</td>
</tr>
<tr>
<td>Ages 50-59</td>
<td>6.97 (2.43)</td>
</tr>
<tr>
<td>Ages 60+</td>
<td>4.89 (1.90)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Independent Variables</th>
<th>Mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical Marijuana Law</td>
<td>0.111 (0.311)</td>
</tr>
<tr>
<td>Marijuana Decriminalization Law</td>
<td>0.327 (0.469)</td>
</tr>
<tr>
<td>Ln (State Income)</td>
<td>10.3 (0.153)</td>
</tr>
<tr>
<td>Unemployment Rate</td>
<td>5.43 (1.36)</td>
</tr>
<tr>
<td>Blood Alcohol Content 0.08</td>
<td>0.509 (0.491)</td>
</tr>
<tr>
<td>Zero Tolerance Law</td>
<td>0.721 (0.440)</td>
</tr>
<tr>
<td>Real Beer Tax (2000 dollars)</td>
<td>0.252 (0.214)</td>
</tr>
</tbody>
</table>

N 918

Data on suicides are from the National Center for Health Statistics Mortality Detail Files, produced by the Centers for Disease Control. Information on medical marijuana laws are from a recent Congressional Research Services Report by Eddy (2010), and information on decriminalization laws are from Model (1993) and Scott (2010). The state income and unemployment data are from the Bureau of Labor Statistics and the Bureau of Economic Analysis, respectively. The data on 0.08 BAC laws, Zero Tolerance laws, and beer taxes are from Freeman (2007), the National Highway Traffic Safety Administration, and the Beer Institute, respectively.
Table 2. Estimates of Relationship between Medical Marijuana Laws and the Natural Log of the Suicide Rate

<table>
<thead>
<tr>
<th>Year/State FEs and Covariates</th>
<th>Suicides Total</th>
<th>Suicides Male</th>
<th>Suicides Female</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.072**</td>
<td>-0.065***</td>
<td>-0.080</td>
</tr>
<tr>
<td></td>
<td>(0.036)</td>
<td>(0.031)</td>
<td>(0.050)</td>
</tr>
<tr>
<td></td>
<td>[0.94]</td>
<td>[0.94]</td>
<td>[0.83]</td>
</tr>
<tr>
<td>Year/State FEs, Covariates, and State Trends</td>
<td>-0.049*</td>
<td>-0.047**</td>
<td>-0.060</td>
</tr>
<tr>
<td></td>
<td>(0.025)</td>
<td>(0.021)</td>
<td>(0.042)</td>
</tr>
<tr>
<td></td>
<td>[0.96]</td>
<td>[0.96]</td>
<td>[0.87]</td>
</tr>
<tr>
<td>Observations</td>
<td>918</td>
<td>918</td>
<td>918</td>
</tr>
</tbody>
</table>

***Statistically significant at the 1% level; **at the 5% level; *at the 1% level.

Each cell represents the results from a separate regression. The dependent variable is equal to the natural log of the suicide rate per 100,000 population, and is based on information collected from the Centers for Disease Control for the period 1990-2007; the covariates are listed in Table 1. Regressions are weighted using the relevant state-by-sex populations. Standard errors, corrected for clustering at the state level, are in parentheses and R²s are in brackets.
Table 3. Estimates of Relationship between Medical Marijuana Laws and the Natural Log of the Male Suicide Rate by Age Group

<table>
<thead>
<tr>
<th></th>
<th>15-19 yr.-olds</th>
<th>20-29 yr.-olds</th>
<th>30-39 yr.-olds</th>
<th>40-49 yr.-olds</th>
<th>50-59 yr.-olds</th>
<th>60+ yr.-olds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year/State FEs</td>
<td>-0.091</td>
<td>-0.096***</td>
<td>-0.129***</td>
<td>-0.113**</td>
<td>-0.010</td>
<td>-0.010</td>
</tr>
<tr>
<td>and Covariates</td>
<td>(0.080)</td>
<td>(0.022)</td>
<td>(0.032)</td>
<td>(0.054)</td>
<td>(0.045)</td>
<td>(0.034)</td>
</tr>
<tr>
<td></td>
<td>[0.72]</td>
<td>[0.85]</td>
<td>[0.83]</td>
<td>[0.80]</td>
<td>[0.73]</td>
<td>[0.90]</td>
</tr>
<tr>
<td>Year/State FEs,</td>
<td>-0.118</td>
<td>-0.114***</td>
<td>-0.099***</td>
<td>-0.060</td>
<td>-0.015</td>
<td>0.036</td>
</tr>
<tr>
<td>Covariates, and</td>
<td>(0.114)</td>
<td>(0.037)</td>
<td>(0.037)</td>
<td>(0.043)</td>
<td>(0.041)</td>
<td>(0.028)</td>
</tr>
<tr>
<td>State Trends</td>
<td>[0.75]</td>
<td>[0.87]</td>
<td>[0.86]</td>
<td>[0.84]</td>
<td>[0.77]</td>
<td>[0.91]</td>
</tr>
<tr>
<td>Observations</td>
<td>918</td>
<td>918</td>
<td>918</td>
<td>918</td>
<td>918</td>
<td>918</td>
</tr>
</tbody>
</table>

***Statistically significant at the 1% level; **at the 5% level; *at the 1% level.

Each cell represents the results from a separate regression. The dependent variable is equal to the natural log of the suicide rate per 100,000 population, and is based on information collected from the Centers for Disease Control for the period 1990-2007; the covariates are listed in Table 1. Regressions are weighted using the relevant state-by-age populations. Standard errors, corrected for clustering at the state level, are in parentheses and R²’s are in brackets.
Table 4. Estimates of Relationship between Medical Marijuana Laws and the Natural Log of the Female Suicide Rate by Age Group

<table>
<thead>
<tr>
<th></th>
<th>15-19 yr.-olds</th>
<th>20-29 yr.-olds</th>
<th>30-39 yr.-olds</th>
<th>40-49 yr.-olds</th>
<th>50-59 yr.-olds</th>
<th>60+ yr.-olds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year/State FEs and Covariates</td>
<td>-0.105 (0.165)</td>
<td>-0.044 (0.065)</td>
<td>-0.110** (0.054)</td>
<td>-0.078 (0.066)</td>
<td>-0.019 (0.072)</td>
<td>-0.082 (0.057)</td>
</tr>
<tr>
<td></td>
<td>[0.30]</td>
<td>[0.40]</td>
<td>[0.53]</td>
<td>[0.65]</td>
<td>[0.51]</td>
<td>[0.63]</td>
</tr>
<tr>
<td>Year/State FEs, Covariates, and State Trends</td>
<td>0.083 (0.235)</td>
<td>-0.008 (0.065)</td>
<td>-0.035 (0.088)</td>
<td>-0.041 (0.055)</td>
<td>-0.104* (0.060)</td>
<td>-0.121** (0.059)</td>
</tr>
<tr>
<td></td>
<td>[0.34]</td>
<td>[0.45]</td>
<td>[0.59]</td>
<td>[0.71]</td>
<td>[0.55]</td>
<td>[0.65]</td>
</tr>
<tr>
<td>Observations</td>
<td>918</td>
<td>918</td>
<td>918</td>
<td>918</td>
<td>918</td>
<td>918</td>
</tr>
</tbody>
</table>

***Statistically significant at the 1% level; **at the 5% level; *at the 1% level.

Each cell represents the results from a separate regression. The dependent variable is equal to the natural log of the suicide rate per 100,000 population, and is based on information collected from the Centers for Disease Control for the period 1990-2007; the covariates are listed in Table 1. Regressions are weighted using the relevant state-by-age populations. Standard errors, corrected for clustering at the state level, are in parentheses and R²’s are in brackets.
Appendix Table 1. Medical Marijuana Laws, 1990-2007

<table>
<thead>
<tr>
<th>State</th>
<th>Effective date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alaska</td>
<td>March 4, 1999</td>
</tr>
<tr>
<td>California</td>
<td>November 6, 1996</td>
</tr>
<tr>
<td>Colorado</td>
<td>June 1, 2001</td>
</tr>
<tr>
<td>Hawaii</td>
<td>December 28, 2000</td>
</tr>
<tr>
<td>Maine</td>
<td>December 22, 1999</td>
</tr>
<tr>
<td>Montana</td>
<td>November 2, 2004</td>
</tr>
<tr>
<td>Nevada</td>
<td>October 1, 2001</td>
</tr>
<tr>
<td>New Mexico</td>
<td>July 1, 2007</td>
</tr>
<tr>
<td>Oregon</td>
<td>December 3, 1998</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>January 3, 2006</td>
</tr>
<tr>
<td>Vermont</td>
<td>July 1, 2004</td>
</tr>
<tr>
<td>Washington</td>
<td>November 3, 1998</td>
</tr>
</tbody>
</table>

Arizona, D.C., Delaware, Michigan, and New Jersey have passed medical marijuana laws since 2007. Source: Eddy (2010).
Appendix Table 2. Alcohol Consumption and Medical Marijuana Laws: Summary of Results from Anderson et al. (2011)

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>18-19 yr.-olds</td>
<td>20-29 yr.-olds</td>
<td>30-39 yr.-olds</td>
<td>40-49 yr.-olds</td>
<td>50-59 yr.-olds</td>
<td>60 + yr.-olds</td>
</tr>
<tr>
<td>Number of Drinks (Males)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MML</td>
<td>-18.7%</td>
<td>-21.6%**</td>
<td>-2.53%</td>
<td>-4.70%</td>
<td>-3.74%</td>
<td>-3.07%</td>
</tr>
<tr>
<td>Observations</td>
<td>852</td>
<td>852</td>
<td>852</td>
<td>852</td>
<td>852</td>
<td>852</td>
</tr>
</tbody>
</table>

Number of Drinks (Females)						
MML	5.26%	-21.0%**	-10.3%*	-12.6%**	-5.43%	-12.2%
Observations	855	855	855	855	855	855

	Yes	Yes	Yes	Yes	Yes	Yes
Year FEs						
State FEs	Yes	Yes	Yes	Yes	Yes	Yes
Covariates	Yes	Yes	Yes	Yes	Yes	Yes
State-specific trends	Yes	Yes	Yes	Yes	Yes	Yes

*Statistically significant at 10% level; **at 5% level; ***at 1% level.

Each column represents the results from a separate regression. The dependent variable is the mean number of drinks consumed in the past 30 days in state s and year t, and is based on information collected from the Behavioral Risk Factor Surveillance System (BRFSS) for the period 1990-2009. Controls include the state unemployment rate, per capita income, the relevant population size (e.g., the number of males or females in state s and year t), the state beer tax, and indicators for marijuana decriminalization, BAC 0.08, administrative license revocation, and Zero Tolerance. Regressions are weighted using sample sizes from the BRFSS. Standard errors, corrected for clustering at the state level, are in parentheses.
Appendix Table 3. Alcohol Sales and Medical Marijuana Laws: Summary of Results from Anderson et al. (2011)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MML</td>
<td>-5.3%***</td>
<td>-1.2%</td>
<td>-0.2%</td>
</tr>
<tr>
<td>Observations</td>
<td>1020</td>
<td>816</td>
<td>816</td>
</tr>
<tr>
<td>Year FEs</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>State FEs</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Covariates</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>State-specific trends</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

*Statistically significant at 10% level; **at 5% level; ***at 1% level.

Each column represents the results from a separate regression. The dependent variable is equal to the natural log of per capita sales (measured in gallons) and is based on data from the *Brewers Almanac*, published by the Beer Institute. Controls include the state unemployment rate, per capita income, the state beer tax, and indicators for marijuana decriminalization, BAC 0.08, administrative license revocation, and Zero Tolerance. Regressions are weighted using state populations. Standard errors, corrected for clustering at the state level, are in parentheses.